2019年自考《运筹学基础》章节习题及答案汇总(下)

编辑整理:广东自考网   发布于:2019-07-27 15:33:39 点击: 次 
立即购买

《自考视频课程》名师讲解,轻松易懂,助您轻松上岸!低至199元/科!

1、某唱片、磁带工厂根据市场对该厂产品日益增长的需求,拟就三个方案:扩建老厂、建立新

厂、将部分生产任务转包给别的工厂。三个方案在产品销路好、销路平常、销路差的情况下、经估算在下一个五年内可获得的益损表如下,试用最小最大遗憾值决策进行决策,选定最优方案。

可行方案\益损值(万元)\销售状态 销路好 销路平常 销路差

扩建老厂 50 25 -25

建立新厂 70 30 -40

转包外厂 30 15 -1

解:

最小最大遗憾值决策表如下:

销路好 销路一般 销路差 最大遗憾值

扩建 20 5 24 24

新建 0 0 39 39

转包 40 15 0 40

选择最小遗憾值为24,所以决策结果为扩建老厂。

2、.题目见书上46页。

图就不画了,只是分步计算各个方案的期望收益值,计算过程如下:

i)扩建厂的收益:

销路好: 50*10*0.5=250

销路一般:25*10*0.3=75

销路差: -25*10*0.1=-25

销路极差:-45*10*0.1=-45

10年的利润为:250+75-25-45=255

每年的利润率:255/10/100=25.5%

ii)新建厂:

销路好: 70*10*0.5=350

销路一般:30*10*0.3=90

销路差: -40*10*0.1=-40

销路极差:-80*10*0.1=-80

10年的利润为:350+90-40-80=320

每年的利润率:320/10/200=16%

iii)转包:

销路好: 30*10*0.5=150

销路一般:15*10*0.3=45

销路差: -5*10*0.1=-5

销路极差:-10*10*0.1=-10

10年的利润为:150+15-5-10=180

每年的利润率:180/10/20=90%

结论:选择转包年利润率最高。



第四章作业 库存管理P66

1.、题目见书上66页。

利用公式4-9可得:

N*N=2*2000*200*500/200*200*0.25=40000

N=200

所以最佳订货量为200卷/次

2.在本章所举的采购轴承台套的例4-1中,在其他条件不变的情况下,若供应者所提供的数量折扣,根据会计部门核算,在考虑到运输部门提供的运价优惠以后,每个轴承台套的进厂价为490元/套,经过计算,试问该企业应接受供应者的数量折扣,将订货批量提高到每次订购100台套吗?

解:该题的解答可以完全参照书上65页的例题,感觉基本上是一样的。解答如下:

原方案(每次订货40台套)

轴承全年采购价(进厂价) 200套 * 500元/套 = 100000元

全年订货费用 (200套/40套)*250元/次=1250元

全年保管费用 1/2(500元/套*40套)*12.5% =1250元

三项合计 102500元

新方案(每次订货100台套)

轴承台套的全年采购价(进厂价) 200套 * 490元/套 = 98000元

全年订货费用 (200套/100套)*250元/次=500元

全年保管费用 1/2(490元/套*100套)*12.5=3062.5元

三项合计 101562.5元

评价结果:102500元 – 101562.5元 = 937.5元,

根据3项金额合计数的比较,新方案比原方案可少支出金额937.5元,因此可以接受。

3.计算本章以表4-2所举的轴承台套例4-1中的每次订货的最佳供应天数(计算时以每年365天基准)。提示:每年库存保管费用 = 年订货费用,最佳供应天数 = 365/最佳订货次数

解:计算最佳供应天数可以转变为计算订货次数

所以,先求解最佳订货次数,也就是书上59页的例题了。

可得 最佳订货次数为5次

所以:最佳供应天数 = 365/5 = 73天



第五章作业 线性规划P92

1.线性规划的定义:线性规划是求一组变量的值,在满足一组约束条件下,求得目标函数的最优解,使决策目标达到最优。

2.阐述线性规划的模型结构:(答案在书上68页)

·(1)变量是指实际系统或决策问题中有待确定的未知因素,也是指系统中的可控因素,一般来说,这些因素对系统目标的实现及各项经济指标的完成起决定作用,又称为决策变量。

·(2)目标函数是决策者对决策问题目标的数学描述是一个极值问题,即极大值或极小值。要依据经济规律的客观要求,并具体结合决策问题的实际情况来确定模型的目标函数。

(3)·约束条件是指实现目标的限制因素,反映到模型中就是需要满足的基本条件即约束方程,一般是一组联立方程组或不等式方程组的数学形式。

约束条件具有三种基本类型 :大于或等于;等于;小于或等于。

(4)·线性规划的变量应为正值。

线性规划明确定义:线性规划是求一组变量X1,X2,X3…的值,在满足一组约束条件下,求得目标函数的最优解(最大值或最小值)问题。

3、解:本题是求解最大值的问题,和书上的例题5-3类似。

首先拟定线性规划模型

1)设定变量:

设该电车本周生产甲车x辆,乙车y辆,丙车z辆。

2)建立目标函数,求利润S 的最大值:

maxS=270x+400y+450z

3) 根据约束条件建立约束方程组:

x+2y+3z <=100

2x+2y+3z <=120

4) 变量非负:

x,y,z >=0

建立初始单纯形表:

1) 引入松弛变量

x+2y+3z +k1=100

2x+2y+3z +k2=120

2)目标函数:maxS=270x+400y+450z+0*k1+0*k2

3)变量非负

4)建立初始单纯形表

Cj 270 400 450 0 0 S

基 x y z k1 k2

———————————————————————————

0 k1 1 2 3 1 0 100

0 k2 2 2 3 0 1 120

———————————————————————————

Zj 0 0 0 0 0 0

Cj-Zj 270 400 450 0 0 S

分析上面的初始表,变量系数最大的是z

k1所在行:100/3

k2所在行:120/3=40

所以选定 k1出基

进行第一次迭代,得到如下单纯形表

Cj 270 400 450 0 0 S

基 x y z k1 k2

———————————————————————————

450 z 1/3 2/3 1 1/3 0 100/3

0 k2 1 0 0 -1 1 20

———————————————————————————

Zj 150 300 450 150 0 15000

Cj-Zj 80 100 0 -150 0 S-15000

变量系数最大的是y,所以选择y作为基变量。

z所在行:450/(2/3)=675

k2所在行:20/1=20

所以选定 k2出基

进行第二次迭代,得到如下单纯形表

Cj 270 400 450 0 0 S

基 x y z k1 k2

———————————————————————————

450 z 0 2/3 1 2/3 -1/3 80/3

270 x 1 0 0 -1 1 20

———————————————————————————

Zj 270 300 450 30 120 17400

Cj-Zj 0 100 0 -30 -120 S-17400

量系数最大的是y且是正数,所以选择y作为基变量。

y所在行:(80/3)/(2/3)=40

x所在行:20/0 =+∞

+∞>40,所以z出基 (小于零的和除以0的应该不算)

进行第三次迭代,得到如下单纯形表

Cj 270 400 450 0 0 S

基 x y z k1 k2

———————————————————————————

400 y 0 1 3/2 3/2 -1/2 40

270 x 1 0 0 -1 1 20

———————————————————————————

Zj 270 400 600 330 70 21400

Cj-Zj 0 0 -150 -330 -70 S-21400

因为所有的系数都小于0,所以得到最优解。

S=21400-150z-330k1-70k2

当k1=k2=0时可得x=20,y=40

所以该厂本周的产品组合应该为生产甲车20辆,乙车40辆

4、解:MIN S=1.5X-2.5Y+18.5

则S’=1.5X-2.5Y

约束条件:X-Y-S1+A=1/4

x-Y+S2=1/2

X+Y+S3=1

X+S4 =1

Y+S5 =1

标准型:MIN S’=1.5X-2.5Y+0S1+MA+0S2+0S3+0S4+0S5

建立初始单纯行表:

Cj 2/3 -2/5 0 M 0 0 0 0

基 x y S1 A S2 S3 S4 S5 S

------------------------------------------------------------

M A 1 -1 -1 1 0 0 0 0 1/4

0 S2 1 -1 0 0 1 0 0 0 1/2

0 S3 1 -1 0 0 1 1 0 0 1

0 S4 1 0 0 0 0 0 1 0 1

0 S5 0 1 0 0 0 0 0 1 1

--------------------------------------------------------------

ZJ M -M -M M 0 0 0 0 1/4M

cj-zj 2/3-M -2/5+M M 0 0 0 0 0 s’-1/4m

分析上面的初始表,变量系数最小的是x,所以选择x作为基变量。

s/x 最小的是A

所以选定 A出基

进行第一次迭代,得到如下单纯形表:

Cj 2/3 -2/5 0 M 0 0 0 0

 


以上就是关于《2019年自考《运筹学基础》章节习题及答案汇总(下)》的全部内容,如需了解更多学历提升自考报名报考时间自考报名流程自考院校和专业查询开考时间安排自考课程自考教材购买等的相关问题,可随时添加广东自考网《专业老师微信》进行在线沟通了解哦~

本文标签:模拟试题

转载请注明:文章转载自(http://www.gdszkw.com

本文地址:http://www.gdszkw.com/jingji/21871.html



《广东自考网》免责声明:

1、由于考试政策等各方面情况的调整与变化,本网提供的考试信息仅供参考,最终考试信息请以省考试院及院校官方发布的信息为准。

2、本站内容部分信息均来源网络收集整理或来源出处标注为其它媒体的稿件转载,免费转载出于非商业性学习目的,版权归原作者所有,如有内容与版权问题等请与本站联系。联系邮箱:812379481@qq.com

广东自考-便捷服务