微型计算机原理及应用学习笔记 从8086到PentiumⅢ

编辑整理:广东自考网   发布于:2018-05-23 12:28:38 点击: 次 
立即购买

《自考视频课程》名师讲解,轻松易懂,助您轻松上岸!低至199元/科!

自从1978年6月推出8086微处理器以后,到1999年初PentiumⅢ芯片问世,80x86系列微处理器不仅在PC机市场占有主流地位,同时正向计算机各个应用领域发展。本节简要介绍8086以后各种x86芯片的主要特点,使读者对整个80X86系列的发展有一个全面了解。前一单元fix = o ns = "urn:schemas-microsoft-com:office:office" />
一、Inel 80286 微处理器的基本情况
80286是美国Intel公司于1982年推出的一种高性能的16位微处理器。片内集成有存储管理和保护机构,能用四层特权支持操作系统和任务的分离,同时也支持任务中的程序和数据的保密。80286是8086向上兼容的微处理器,它有两种工作方式——实方式(又称实地址方式)和保护方式(又称保护虚地址方式)。在实方式中,80286兼容了8086的全部功能,8086的汇编语言源程序不做任何修改可以在80286中运行。在保护方式中,80286把实方式的能力和存储器管理,对虚拟存储器的支持以及对地址空间的保护集为一体,使80286能可靠地支持多用户和多任务系统。80286有24条地址线,在实方式下只使用20条地址线,有220字节(1MB)的寻址能力,这与8086相同;在保护方式下,使用24条地址线,有224字节(16MB)寻址能力,它能将每个任务的230字节(1024MB即1GB)的虚地址映射到224字节的物理地址中去。
 
二、Intel 80386微处理器的基本结构
80386是Intel公司于1985年1月推出的一种高性能的32位微处理器它与8086、80286相兼容,是为高性能的应用领域与多用户、多任务操作系统而设计的一种高集成度的芯片。80386具有片内集成的存储器管理部件和保护机构,它的数据线是32位,内部的寄存器结构和操作也是 32位,具有32位地址线,能直接寻址4GB(1GB为10243B )的物理地址空间。它的虚拟存储空间为64TB (1TB为10244B)。
 
三、Intel 80486微处理器的基本结构
Intel公司于1989年4月推出了一种新的32位微处理器80486(简称486),同 80386相比,在相同的工作频率下,其处理速度提高了2~4倍。80846采用了RISC(Reduced Instruction Set Computer,精简指令系统计算机)技术,降低了执行每条指令所需要的时钟数,使其能达到1.2条指令/时钟。486以前的处理器执行一条指令是取得一个地址,再进行一个数据的输入/输出,而486采用一种突发式总线(Burst Bus)的技术,使取得一个地址后、与该地址相关的一组数据都可以进行输入/输出,有效地解决了微处理器同内存储器之间的数据交换问题。加上486内部集成有FPU(Floating Point Unit,浮点部件)和Cache(超高速缓冲存储器),以及CPU和FPU、CPU和Cache之间都采用高速总线进行数据传送,使486CPU的处理速度,以及486系统的处理速度都得到了极大提高。
四、Intel Pentium微处理器
Pentium是Intel公司于1993年3月推出的第五代80x86系列微处理器、简称P5或80586,中文名为“奔腾”。
Pentium 芯片具有如下特点。
(一)超标量流水线
Pentium由“U”和“V”两条指令流水线构成超标量流水线结构,其中,每条流水线都有自己的 ALU、地址生成逻辑和Cache接口。在每个时钟周期内可执行两条整数指令,每条流水线分为指令预取、指令译码、地址生成、指令执行和回写等五个步骤。当一条指令完成预取步骤时,流水线就可以开始对另一条指令的操作,极大地提高了指令的执行速度。
(二)重新设计的浮点部件
Pentium的浮点部件在80486的基础上作了重新设计,其执行过程分为8级流水,使每个时钟周期能完成一个浮点操作(或两个浮点操作)。采用快速算法可使诸如 ADD、MUL和LOAD等运算的速度最少提高3倍,在许多应用程序中利用指令调度和重叠(流水线)执行可使性能提高5倍以上。同时,用电路进行固化,用硬件来实现。
(三)独立的指令Cache和数据Cache
Pentium片内有两个8KB的Cache——双路Cache结构,一个是指令Cache,一个是数据 Cache。TLB(Translation look-aside buffer,转换后备缓冲器)的作用是将线性地址转换为物理地址。这两种Cache采用32×8线宽,是对Pentium 64位总线的有力支持。指令和数据分别使用不同的Cache, 使Pentium中数据和指令的存取减少了冲突 提高了性能。
Pentium的数据Cache有两个接口,分别与U和V两条流水线相连,以便能在相同时刻向两个独立工作的流水线进行数据交换。当向已被占有满的数据Cache写数据时,将移走一部分当前使用频率最低的数据,并同时将其写回内存,这种技术称为Cache回写技术。由于CPU向Cache写数据和将Cache释放的数据写回内存是同时进行的,所以,采用Cache回写技术将节省处理时间。
(四)分支预测
Pentium提供了一个称为BTB(Branch Target Buffer,分支目标缓冲器)的小Cache来动态地预测程序的分支操作。当某条指令导致程序分支时,BTB记忆下该条指令和分支目标的地址,并用这些信息预测该条指令再次产生分支时的路径,预先从该处预取,保证流水线的指令预取步骤不会空置。这一机构的设置,可以减少每次在循环操作时对循环条件的判断所占用的CPU的时间。
五、Intel Pentium Pro 微处理器
Pentium Pro是Intel公司于1995年11月推出的80x86系列中又一个新品种,简称P6,中文名为“高能奔腾”。同 Pentium芯片相比,Pentum Pro芯片增加了如下新的内容:
(1)芯片中 CPU内核为 550万个晶体管,二级高速缓冲存储器(L2 Cache)为 1550万个晶体管;
(2)使用三条超标量流水线;
(3)有5个并行的执行部件 用于整型数运算的2个,用于装载、存储和浮点数运算的各1个;
(4)采用事务型的I/O总线和不分块的高速缓存体系;
(5)采用乱序执行、动态转移预测以及风险执行。
Pentium Pro微处理器的主要特点可以从下面 6个方面进行说明。
(一)一个封装内装有两个芯片
Pentium Pro的一个封装内有两个紧密耦合的底座。一个底座放CPU以及两个 8KB的一级(L1)高速缓存;另一个底座放 256KB SRAM二级(L2)高速缓存。两个底座放在同一个387针脚的陶瓷封装里,称为双穴PGA(针脚网格阵列)。把二级高速缓存同CPU封在一起的好处是;①Pentium Pro内藏二级高速缓存解决了同 CPU的协调,使个人机厂家更容易设计出搭载 Pentium Pro的系统;②用64 位宽的、时钟频率同CPU一样的专用总线连接CPU和二级高速缓存有助于提高系统的性能。
(二)精心设计的微结构
Pentium Pro对二级高速缓存使用专用总线(L2总线也称后台总线)它同外部 I/O总线(也称前台总线)完全分开,使得 Pentium Pro的二级高速缓存用不着同内存、外设分时访问总线。另外 为满足超标量 CPU对数据的极大需求,Pentium Pro采用使一级和二级高速缓存用无阻塞方法来提高其性能,设计了一种高速缓存体系,使得能从一个高速缓存流动到另一个高速缓存而不用阻塞执行。在CPU取数时,Pentium Pro采用二种措施来提高其效率,一是使前台总线和后台总线保持独立,因而可以同时工作,二是前台总线为事务处理型的(transctional)。当Pentium Pro在等待完成存储器访问时,它可以开始另一个访问,多达8个这样的事务处理,效果是非常明显的,事务处理可以是装载或存放,每一次事务处理都记录在MOB(存储器次序缓冲区)中,因此CPU不会把它们搞乱。为了保持高速缓存和存储器之间的协调,Pentium Pro采用 NESI(修改、排斥、共享和作废)一致性协议。这保证了在单个和多个处理器系统中的高速缓存协调,它还可以防止由于自修改码引起的潜在事故。
(三)指令分解为微操作
设计Pentium Pro时面临的最大矛盾是要提高性能就要采用RISC(精简指令系统计算机,Reduction Instruction Set Computer)方式使指令能在流水线上并行执行;而要保持同以往的x86微处理器兼容,就要采用CISC(复杂指令系统计算机,Complex Instruction Set Computer)指令,这样才能使x86的庞大软件资源能在 Pentium Pro上运行。为了解决这一矛盾,一方面采用CISC指令以保持兼容性;另一方面在执行时将指令分解为若干像RISC指令的微操作,使其能在流水线上并行地执行,以提高性能。
(四)乱序执行和推测执行
乱序(Out-of-order)执行是指不完全按程序规定的指令顺序依次执行。推测(SPeculative)执行是指遇到转移指令时,不等结果出来便先推测可能往哪里转移便提前执行,由于推测不一定全对故带有一定风险,又称风险执行。乱序执行是P6等具有RISC性能的芯片富有生命力的特点,当它同转移推测和推测执行结合在一起时,允许CPU使指令流最有效地利用内部资源。
(五)保留站的作用
Pentium Pro中的乱序执行由一个名为保留站(Reservation Station)的部件进行管理,保留站起交通警的作用 它调度微操作从ROB(重新排序缓冲器)中取出来分发到多个执行部件中的顺序,以充分发挥流水线的能力。
(六)退离部件的作用
当微操作执行完后 其状态标志便被改变以表示已经完成,执行完的微操作返回到ROB中,微操作在那里等待执行或退移(Retirement),使用退移部件的作用是保持程序的完整,该部件将执行完的微操作组合在一起使其退出,从外部看仍是在执行一条条的CISC指令。
六、Intel Pentium MMX微处理器
1997年1月9日,Intel P55C微处理器芯片正式推出,英文全名为 Pentium with MMX或Pentium MMX,中文名为“多能奔腾”。MMX是“Multi Media extension”的缩写,意为“多媒体扩展”。这是为提高PC机用软件来处理多媒体和通信能力而推出的新一代处理器技术,是对LA-32(Intel Architecture, 32位Intel体系结构)指令系统的扩展,它通过在奔腾处理器中增加4种新的数据类型、8个64位寄存器和57条新指令来实现的。
多能奔腾中的MMX技术是Intel x86微处理器体系结构的重大革新,增加了很多新的技术,主要是:
(一)引入新的数据类型
多能奔腾定义了4种新的64位数据类型及其紧缩(又称“压缩”)表示,它们是紧缩字节(8个字节紧缩在一个64位数据中)、紧缩字(4个字紧缩在一个64位数据中)、紧缩双字(2个双字紧缩在一个64位数据中)和4字(一个64位信息)。而新增加的8个64位通用寄存器能够保存各类紧缩的64位数据。这对多媒体处理十分有用,例如处理一幅256级灰度的图像,由于图像像素数据通常以8位整数的字节表示,用MMX技术,8个这样的像素将紧缩为一个64位值并可移入一个MMX寄存器。当一条MMX指令执行时,它将从MMX寄存器中一次对所有8个像素值并行地完成其算术或逻辑操作,并将结果写入一个MMX寄存器,这样用MMX指令进行一次紧缩型字节操作,一次就相当于处理了8个像素。而且能在一个时钟周期内能执行2条指令,使多能奔腾的性能大大超过奔腾。
实际上这是采用SIMD(单指令流多数据流)技术的结果。它能运用单条指令同时并行处理多个数据元素的特性,在一个周期内并行处理4种类型,最多8组的64位宽度的模拟/数字数据,诸如声音数据、图形和图像数据等模拟/数字的数据,使并行性进一步增强。
(二)MMX指令执行的数据紧缩和饱和运算两种新的运算原刚
饱和运算也是MMX支持的一种新的运算,与常用的环绕处理相对比,可见饱和运算的优点所在。
在常规的环绕处理中,上溢或下溢的结果均被截断,只有结果的低位(有效位)能被返回,忽略了进位。而在饱和运算中,上溢或下溢的结果被截取(饱和)至该类数据类型的最大值或最小值,如表2-9所示。例如,一个16位的大符号整数F000H+4000H,其和为13000H,由于保留结果的寄存器为16位,因此最高位 位“1”被截断。结果为3000H,小于任一个输入数。而饱和算法则不同,在饱和算法中若发生“上溢”,则保留结果为FFFFH(16位整数的最大值)若发生“下溢”则保留结果为0000H。这在图形学中很有用。比如,一个暗色多面体正在按黑色作浓淡处理,忽然间出现一个白色的像素,而饱和算法可以保证不会出现这样的问题。因为计算结果被限制在最大的黑色值,而不会溢出成白色。

2-9               饱和数值范围

 

    

    

带符号数

字节

16进制

10进制

16进制

10进制

80H

8000H

-128

-32768

7FH

7FFFH

127

32767

无符号数

字节

00H

000H

0

0

FFH

FFFFH

255

65535

 

(三)具有积和运算能力
在多媒体应用程序中,必须处理大量数据,矢量点积和矩阵乘法是处理图像、音频、视频数据的最基本算法,用多能奔腾中的PMADDWD指令(紧缩字相乘并加结果,即“积和运算”)可以大大提高矢量点积的运算速度。这在音频和视频图像的压缩和解压缩中是经常用到的。
七、Intel PentiumⅡ微处理器
1997年5月,Intel公司推出PentiumⅡ微处理器,简称PⅡ,中文名为“奔腾Ⅱ”。
“奔腾Ⅱ”是Intel公司的P6级微处理器的第二代产品,它把多媒体增强技术(MMX技术)融合入高能奔腾处理器之中,使“奔腾Ⅱ”芯片既保持了“高能奔腾”原有的强大处理功能,又增强了PC机在三维图形、图像和多媒体方面的可视化计算功能和交互功能。从系统结构角度看,“奔腾Ⅱ”芯片采用了如下几种先进技术,使它在整数运算、浮点运算和多媒体信息处理等方面具有十分优异的功能。
(一)多媒体增强技术(MMX技术)
在“奔腾Ⅱ” 中采用了一系列多媒体增强技术:①单指令、多数据流(SIMD,Singl Instruction Multiple Data)技术,使一条指令能完成多重数据的工作,允许芯片减少在视频、声音、图像和动画中计算密集的循环;②为针对多媒体操作中经常出现的大量并行、重复运算,新增加了57条功能强大的指令,以更有效地操作、处理声音、图像和视频数据。强大的MMX技术指令集充分利用了动态执行技术,在多媒体和通信应用中发挥了卓越的功能。
(二)动态执行技术
为了帮助微处理器更有效地处理多重数据,提升软件的速度,“奔腾” 采用了由三种创新处理技巧结合的动态执行技术。这三种技巧是:①多分支跳转预测。使用一种多分支跳转预测的算法。当处理器读取指令时,也同时查看那些以前的指令,该技术增加了传送到处理器的数据流,能对数据流向事先作出考虑。②数据流分析。按一种最佳的顺序执行,使用数据流分析,处理器查看被译码的指令,决定是否符合处理条件或它们决定于其他指令。处理器然后决定最佳的处理顺序,以最有效的方法执行指令。③推测执行。通过预先查找程序计数器和执行那些可能会运行的指令,来增加被执行指令的数量。当处理同时执行5条指令时,便要用到“推测执行”,这使得“奔腾” 微处理器的超计算能力能充分得到发挥,以最大限度地提高指令的并行程度,从而提高软件性能。动态执行技术允许微处理器预测指令的顺序,并排序。
(三)双重独立总线结构(DIB, Dual Independent Bus)
采用了上述二种技术后,使 “奔腾Ⅱ”处理器具有很高的处理能力 但要发挥这一高性能还要求有很快的吞吐能力。而传统的CPU数据总线(如图2-24所示)CPU通过1条数据总线同主在、二级Cache以及PCI相连。这里会出现二个问题,一是二级Cnche受到处理器外部总线速度的限制;二是在任一时刻系统总线只允许一个访问使用。而“奔腾” 处理器采用了双重独立总线结构,如图2-25所示。这是由两条总线组成的双重独立总线体系结构,一条是二级Cache总线,另一条是处理器至主存储器的系统总线,“奔腾Ⅱ”处理器可以同时使用这两条总线,使“奔腾Ⅱ” 处理器的数据吞吐能力是单一总线结构处理器的2倍。同时,这种双重总线结构使“奔腾Ⅱ” 处理器的二级Cache的运行速度达到奔腾处理器二级Cache的2倍多。随着“奔腾Ⅱ” 处理器主频不断提高,二级Cache的速度也会随之升高。另外,流水线系统总线实现了同时并行事务处理,以取代单一顺序事务处理,加速了系统中的信息流,使总体性能得到提升。总之,这一切同双重独立总线体系结构的改进结合起来,提供3倍于单一总线体系结构处理器的带宽性能。
此外,“奔腾Ⅱ” 处理器还采用了新的封装技术——SEC(Single Edge Contact,单边接触)插盒。SEC插盒技术是先将芯片固定在基板上,然后用塑料和金属将其完全封装起来,形成一个SEC插盒封装的处理器,插盒内的基板上固定的芯片包括PentiumⅡ处理器核心,以及二级静态突发高速缓存RAM(安排在处理器核心左右各1个),如图2-26所示。这一SEC插盒通过slot1插槽同主板相连,为PC系统带来了高性能——动态执行功能和双重独分总线结构。
 
八、Intel  PentiumⅢ 微处理器
1999年2月,Intel公司发布了带有70条附加浮点多媒体指令的PentiumⅢ微处理器,简称PⅢ,中文名为“奔腾Ⅲ”。
(一)带SSE指令集的PentiumⅢ处理器
最早推出的PentiumⅢ的主频为450MHz和500MHz,系统总线频率为100MHz,采用P6微结构,一级缓冲存储器为16KB指令Cache和 6KB数据 Cache;二级缓冲存储器为512KB,速度相当于CPU核心速度的1/2。针对32位应用程序进行优化,采用双重独立总线,具有动态执行功能。其最大的特点是增加了70条SSE(Streaming SIMD Extensions,数据流单指令多数据扩展)指令集,原先称为“MMX2指令集”,即“第二代多媒体扩展指令集”。PetiumⅢ原先称为“Katmai” ,是属于PentiumⅡ中的一种新品种。
PentiumⅢ芯片中的70条SSE指令可分为3类:
(1)内在连续数据流优化处理指令8条;
(2)SIMD(单指令多数据)浮点运算指令50条;
(3)新的多媒体指令12条。
这些指令能增强音频、视频和3D图形处理能力。
为配合SSE指令集,PentiumⅢ芯片增加了8个新的128位单精度寄存器(4 × 32位),能同时处理4个单精度浮点变量,可达到每秒20亿次的浮点运算速度。使PentiumⅢ芯片在三维图像处理、语音识别和视频实时压缩等方面的应用得到长足的进步。
(二)新一代PentiumⅢ微处理器Coppermine
1999年10月25日,Intel公司又发布了基于0.18μm技术制造的新一代PentiumⅢ微处理器,开发代号为Coppermine,该芯片最高主频达733MHz,可工作在133MHz外频(外部时钟频率)。
Coppermine的主要特性为:
(1)内置工作在核心频率下的256 KB二级缓存;
(2)采用0.18μ的制造工艺,在106mm2芯片上,集成了2800万个晶体管,而最早推出的Katmai在128mm2芯片上,集成了900万个晶体管。Coppermine芯片可工作在1.1~1.7V的电压下,发热量小,功耗低。
(3)采用先进的缓存转换架构。内置的二级Cache使用一条256位的宽带数据通路,相当于采用64位数据通路的另外二级Cache的4倍,每个时钟能转换32字节的二级缓存,使在处理器核心与二级Cache之间的理论数据带宽达11.2GB/s。
(4)采用先进的系统缓冲器,用6个填充缓冲器代替原先的4个填充缓冲器用8条总线队列代替原先的4条总线队列,用4个回写缓冲器代替原先的1个,使Coppermine在133MHz时钟总线上运行时更具优势。
(5)采用适用于移动PC系统的Speedstep技术。这一技术可以使Coppermine降低运行速度和电压以降低电源功耗,延长运行时间,这对使用电池的移动式PC系统具有实用意义;而当使用外接电源时,可以全速与全电压方式运行,提高了系统的灵活性。


以上就是关于《微型计算机原理及应用学习笔记 从8086到PentiumⅢ》的全部内容,如需了解更多学历提升自考报名报考时间自考报名流程自考院校和专业查询开考时间安排自考课程自考教材购买等的相关问题,可随时添加广东自考网《专业老师微信》进行在线沟通了解哦~

本文标签:串讲笔记

转载请注明:文章转载自(http://www.gdszkw.com

本文地址:http://www.gdszkw.com/gxl694/8711.html



《广东自考网》免责声明:

1、由于考试政策等各方面情况的调整与变化,本网提供的考试信息仅供参考,最终考试信息请以省考试院及院校官方发布的信息为准。

2、本站内容部分信息均来源网络收集整理或来源出处标注为其它媒体的稿件转载,免费转载出于非商业性学习目的,版权归原作者所有,如有内容与版权问题等请与本站联系。联系邮箱:812379481@qq.com

广东自考-便捷服务